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Marc-André Elsliger,a,e Ashley M.
Deacon,a,b Adam Godzik,a,f,h Scott A.
Lesleya,e,g and Ian A. Wilsona,e*

aJoint Center for Structural Genomics,

http://www.jcsg.org, USA, bStanford Synchrotron

Radiation Lightsource, SLAC National Accelerator

Laboratory, Menlo Park, CA, USA, cThe University of

Texas Southwestern Medical Center at Dallas, Dallas,

TX, USA, dHoward Hughes Medical Institute, Dallas, TX,

USA, eDepartment of Molecular Biology, The Scripps

Research Institute, La Jolla, CA, USA, fProgram on

Bioinformatics and Systems Biology, Burnham Institute

for Medical Research, La Jolla, CA, USA, gProtein

Sciences Department, Genomics Institute of the Novartis

Research Foundation, San Diego, CA, USA, hCenter for

Research in Biological Systems, University of California,

San Diego, La Jolla, CA, USA, and iPhoton Science,

SLAC National Accelerator Laboratory, Menlo Park, CA,

USA

Correspondence e-mail: wilson@scripps.edu

Received 16 April 2009

Accepted 12 June 2009

PDB Reference: NGO1945 from N. gonor-

rhoeae, 3dee, r3deesf.

Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The

crystal structure of a member of this family, NGO1945 from Neisseria

gonorrhoeae, has been determined and reveals that the N-terminal DUF2063

domain is likely to be a DNA-binding domain. In conjunction with the rest of the

protein, NGO1945 is likely to be involved in transcriptional regulation, which is

consistent with genomic neighborhood analysis. Of the 216 currently known

proteins that contain a DUF2063 domain, the most significant sequence

homologs of NGO1945 (�40–99% sequence identity) are from various Neisseria

and Haemophilus species. As these are important human pathogens, NGO1945

represents an interesting candidate for further exploration via biochemical

studies and possible therapeutic intervention.

1. Introduction

NGO1945 from Neisseria gonorrhoeae FA 1090 is a protein of un-

known function with a molecular weight of 28.6 kDa (residues 1–248)

and a calculated isoelectric point of 4.65. It contains an N-terminal

DUF2063 domain (residues 10–92) that has recently been classified as

a new Pfam family, PF09836 (Finn et al., 2008), which is currently

comprised of 216 proteins from 173 species (170 from proteobacteria

and one each from acidobacteria, bacteroidetes and planctomycetes).

Pfam also indicates that this domain is observed in 68 sequences from

NCBI’s METASEQ metagenomics data set. Of these 216 proteins,

215 have a single N-terminal DUF2063 domain and, in one instance,

this domain is found with a DUF692 domain (PF05114; TIM barrel

superfamily, Pfam clan CL0152, which includes endonuclease IV), in

which the DUF692 domain is at the N-terminus. Bioinformatics

analysis (Altschul et al., 1997; Marchler-Bauer et al., 2007; Jaroszewski

et al., 2005; Tatusov et al., 2000) revealed that of the significant

sequence homologs of NGO1945, five proteins are from different

species of Neisseria (94–99% sequence identity) and 14 (including

predicted RNA polymerase sigma factor and repair proteins) are

from different strains of Haemophilus (40–90% sequence identity).

We have determined the crystal structure of NGO1945 to 2.1 Å

resolution in order to expand structural coverage of novel protein-

sequence space and assign putative functions to novel proteins that

have not been previously studied and whose functions cannot be

inferred from sequence homology. This study allows us to assign a

putative molecular function to the NGO1945 protein and to the

DUF2063 domain.

2. Materials and methods

2.1. Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer

Extension (PIPE) cloning method (Klock et al., 2008). The gene

encoding NGO1945 (GenBank YP_208969) was amplified by poly-

merase chain reaction (PCR) from N. gonorrhoeae FA 1090 genomic

DNA using PfuTurbo DNA polymerase (Stratagene) and I-PIPE

primers (forward primer, 50-ctgtacttccagggcATGCAGCCTGAAAC-

CTCCGCCCAATACC-30; reverse primer, 50-aattaagtcgcgttaTGCG-

GATAGATGGTTTTGGCTCGGGG-30; target sequence in upper

case) that included sequences for the predicted 50 and 30 ends. The

genomic DNA used here contained a single amino-acid substitution,



P94L, when compared with the available GenBank sequence from

N. gonorrhoeae FA 1090. The expression vector pSpeedET, which

encodes an amino-terminal tobacco etch virus (TEV) protease-

cleavable expression and purification tag (MGSDKIHHHHHHEN-

LYFQ/G), was PCR-amplified with V-PIPE primers (forward primer,

50-taacgcgacttaattaactcgtttaaacggtctccagc-30; reverse primer, 50-gcc-

ctggaagtacaggttttcgtgatgatgatgatgatg-30). The V-PIPE and I-PIPE

PCR products were mixed to anneal the amplified DNA fragments

together. Escherichia coli GeneHogs (Invitrogen) competent cells

were transformed with the V-PIPE/I-PIPE mixture and dispensed

onto selective LB–agar plates. The cloning junctions were confirmed

by DNA sequencing. Expression was performed in selenomethionine-

containing medium. At the end of fermentation, lysozyme was added

to the culture to a final concentration of 250 mg ml�1 and the cells

were harvested and frozen. After one freeze–thaw cycle, the cells

were homogenized in lysis buffer [50 mM HEPES pH 8.0, 50 mM

NaCl, 10 mM imidazole, 1 mM tris(2-carboxyethyl)phosphine–HCl

(TCEP)] and the lysate was clarified by centrifugation at 32 500g for

30 min. The soluble fraction was passed over nickel-chelating resin

(GE Healthcare) pre-equilibrated with lysis buffer, the resin was

washed with wash buffer [50 mM HEPES pH 8.0, 300 mM NaCl,

40 mM imidazole, 10%(v/v) glycerol, 1 mM TCEP] and the protein

was eluted with elution buffer [20 mM HEPES pH 8.0, 300 mM

imidazole, 10%(v/v) glycerol, 1 mM TCEP]. The eluate was buffer-

exchanged with HEPES crystallization buffer (20 mM HEPES pH

8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) using a PD-10

column (GE Healthcare) and incubated with 1 mg TEV protease per

15 mg eluted protein. The protease-treated eluate was passed over

nickel-chelating resin (GE Healthcare) pre-equilibrated with HEPES

crystallization buffer and the resin was washed with the same buffer.

The flowthrough and wash fractions were combined and concentrated

to 16.2 mg ml�1 by centrifugal ultrafiltration (Millipore) for crystal-

lization trials. NGO1945 was crystallized using the nanodroplet

vapor-diffusion method (Santarsiero et al., 2002) with standard JCSG

crystallization protocols (Lesley et al., 2002) by mixing 100 nl protein

solution with 100 nl crystallization solution and equilibrating against

a 50 ml reservoir volume. The crystallization reagent contained 0.2 M

magnesium chloride, 8.2%(v/v) ethanol and 0.1 M imidazole pH 8.36.

A rod-shaped crystal of approximate dimensions 20 � 20 � 100 mm

was harvested after 34 d at 277 K for data collection. To determine its

oligomeric state in solution, NGO1945 was analyzed using a 1 �

30 cm Superdex 200 size-exclusion column (GE Healthcare) coupled

with miniDAWN static light-scattering (SEC/SLS) and Optilab

differential refractive-index detectors (Wyatt Technology). The

mobile phase consisted of 20 mM Tris pH 8.0, 150 mM NaCl and

0.02%(w/v) sodium azide. The molecular weight was calculated using

ASTRA 5.1.5 software (Wyatt Technology).

2.2. Data collection, structure solution and refinement

No additional cryoprotectant was added to the crystal during data

collection. Initial screening for diffraction was carried out using the

Stanford Automated Mounting system (SAM; Cohen et al., 2002) at

the Stanford Synchrotron Radiation Lightsource (SSRL; Menlo Park,

California, USA). The diffraction data were indexed in the mono-

clinic space group C2. Multi-wavelength anomalous diffraction

(MAD) data were collected at SSRL on beamline BL9-2 at wave-

lengths corresponding to the high-energy remote (�1) and inflection

(�2) of a selenium MAD experiment. The data sets were collected at

100 K using a MarMosaic 325 CCD detector. The MAD data were

integrated and reduced using MOSFLM (Leslie, 1992) and scaled

with the program SCALA from the CCP4 suite (Collaborative

Computational Project, Number 4, 1994). Phasing was performed

with SOLVE (Terwilliger & Berendzen, 1999) and automated model

building was performed with ARP/wARP (Perrakis et al., 1999) and

RESOLVE (Terwilliger, 2000). Model completion was performed

with Coot (Emsley & Cowtan, 2004). Refinement was performed with

REFMAC5 (Winn et al., 2003) with one TLS group, using the high-

energy remote (�1) data set and excluding diffraction maxima present

in ice rings spanning the resolution ranges 3.97–3.82, 3.72–3.61, 3.50–

3.39, 2.69–2.64 and 2.26–2.24 Å and an additional 14 unusually strong

reflections (near ice rings) that had intensities 15� greater than the

average intensity for their resolution bin. The removal of reflections

affected by ice rings resulted in a difference in completeness between

the �1 and �2 data sets. To ensure that the 14 unusually strong

reflections were indeed spurious (near ice rings) and did not reflect

real intensities from the protein component of the crystal, we

calculated structure factors from the final model after refinement,

which revealed that these 14 reflections were not unusually strong.

This analysis confirmed that the 14 reflections in the measured data

should be removed from the refinement data set. Crystallographic

data and refinement statistics are summarized in Table 1.

2.3. Validation and deposition

The quality of the crystal structure was analyzed using the JCSG

Quality Control server, which verifies the stereochemical quality of

the model using AutoDepInputTool (Yang et al., 2004), MolProbity
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Table 1
Crystallographic data and refinement statistics for NGO1945 (PDB code 3dee).

Values in parentheses are for the highest resolution shell.

�1 MADSe �2 MADSe

Space group C2
Unit-cell parameters (Å, �) a = 106.52, b = 31.88, c = 86.37, � = 115.80
Data collection

Wavelength (Å) 0.9184 0.9793
Resolution range (Å) 77.9–2.10 (2.21–2.10) 50.0–2.10 (2.15–2.10)
No. of observations 41439 45988
No. of unique reflections 13583 15291
Completeness (%) 87.2 (97.9) 98.1 (97.7)
Mean I/�(I) 10.9 (2.3) 9.3 (1.7)
Rmerge on I† (%) 8.8 (47.5) 10.9 (52.5)
Rmeas on I‡ (%) 10.7 (57.3) 13.7 (63.4)

Model and refinement statistics
Resolution range (Å) 77.9–2.10
No. of reflections (total) 13555§
No. of reflections (test) 660
Completeness (%) 86.5
Data set used in refinement �1

Cutoff criterion |F | > 0
Rcryst} 0.223
Rfree†† 0.267

Stereochemical parameters
Restraints (r.m.s.d. observed)

Bond angles (�) 1.54
Bond lengths (Å) 0.015

Average isotropic B value (Å2) 37.8‡‡
ESU§§ based on Rfree (Å) 0.22
Protein residues/atoms 200/1633
Waters/ions 95/3

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rmeas =

P
hkl ½n=ðn� 1Þ�1=2

�
P

i jIiðhklÞ � hIðhklÞij=
P

hkl

P
i IiðhklÞ (Diederichs & Karplus, 1997). § Typically,

the number of unique reflections used in refinement is slightly less than the total number
that were integrated and scaled. Reflections are excluded owing to negative intensities
and rounding errors in the resolution limits and unit-cell parameters. In addition, ice-ring
regions were excluded prior to integration and 14 reflections with intensity greater than
15 times the average for their shell were omitted prior to refinement. } Rcryst =P

hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fcalc and Fobs are the calculated and observed
structure-factor amplitudes, respectively. †† Rfree is the same as Rcryst but for 4.9% of
the total reflections chosen at random and omitted from refinement. ‡‡ This value
represents the total B, which includes TLS and residual B components. §§ Estimated
overall coordinate error (Collaborative Computational Project, Number 4, 1994;
Cruickshank, 1999).



(Davis et al., 2004) and WHATIF 5.0 (Vriend, 1990), the agreement

between the atomic model and the data using SFCHECK 4.0

(Vaguine et al., 1999) and RESOLVE (Terwilliger, 2000), the protein

sequence using ClustalW (Thompson et al., 1994) and the atom

occupancies using MOLEMAN2 (Kleywegt, 2000). It also evaluates

the difference in Rcryst/Rfree, expected Rfree/Rcryst and maximum/

minimum B values by parsing the refinement log file and PDB

header. Protein quaternary-structure analysis was performed using

the PISA server (Krissinel & Henrick, 2005). Fig. 1(b) was adapted

from an analysis using PDBsum (Laskowski et al., 2005) and all other

figures were prepared with PyMOL (DeLano, 2002). Atomic co-

ordinates and experimental structure factors have been deposited in

the PDB under accession code 3dee.

3. Results and discussion

3.1. Overall structure

The crystal structure of NGO1945 was determined to 2.10 Å

resolution using the MAD method (Fig. 1). Data-collection, model
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Figure 1
Crystal structure of NGO1945 from N. gonorrhoeae FA 1090. (a) Stereo ribbon diagram of the NGO1945 monomer color coded from the N-terminus (yellow) to the
C-terminus (green). Helices H1–H11 and �-strands �1–�5. (b) Diagram showing the secondary-structure elements of NGO1945 superimposed on its primary sequence. The
labeling of secondary-structure elements is in accord with PDBsum (http://www.ebi.ac.uk/pdbsum), where �-helices are sequentially labeled (H1–H11), �-strands are labeled
(�1–�5), �-turns and �-turns are designated by Greek letters (�, �) and �-hairpins by red loops.



and refinement statistics are summarized in Table 1. The final model

includes one monomer (residues 31–230), two chloride ions, one

imidazole molecule and 95 water molecules in the asymmetric unit.

No electron density was observed for residues 1–30 and 231–248,

even though LC-MS confirmed their presence in the purified protein

before crystallization. Thus, they are either disordered in the crystal

(note that there is sufficient space in the lattice to accommodate the

disordered residues) or the protein may have undergone limited

proteolysis in the crystallization drop. The Matthews coefficient (VM;

Matthews, 1968) is�2.6 Å3 Da�1 and the estimated solvent content is

�53%. The Ramachandran plot produced by MolProbity (Davis et

al., 2004) shows that 96.5% of the residues are in favored regions,

with no outliers. Crystal-packing analysis predicts that NGO1945 may

dimerize via its N-terminal or C-terminal domains [using helices H1,

H5 and H7 (Fig. 2a) or helices H8, H9 and H11 (Fig. 2b), respectively]

with total buried surface areas of 1550 and 1930 Å2 and �Gint values

of �53.2 and �82.0 kJ mol�1, respectively. Analytical size-exclusion

chromatography in combination with static light scattering (SEC/

SLS) revealed the oligomeric form in solution to be a dimer, but with

medium confidence (�30% was clearly dimeric, �50% was inter-

changing between monomer and dimer and �20% was likely to be

monomeric, suggesting that at any given time the dimer:monomer

ratio was �60:40). An imidazole molecule (likely to be from the

buffer) is bound on the surface to Glu114, Asp166 and Arg162, but its

significance is known.

A systematic search for other proteins of similar structure was

conducted using several different methods, including the DALI

server (Holm et al., 2008), the protein structure-comparison service

SSM at the European Bioinformatics Institute (http://www.ebi.ac.uk/

msd-srv/ssm; Krissinel & Henrick, 2005) and the flexible structure-

alignment method FATCAT (Ye & Godzik, 2004). No significant

matches of the full protein structure with any other known protein

structures were found. However, significant structural similarities are

seen with other proteins when queried with individual NGO1945

domains, as discussed below.

3.2. N-terminal domain

The ordered region of the NGO1945 N-terminal domain (residues

31–116) includes the DUF2063 domain (Pfam PF09836; residues 31–

92) and is similar to many proteins that contain �-helical bundles.

Some of the significant hits are with the �2 domain of RNA poly-

merase sigma factor SigR from Streptomyces coelicolor [Li et al.,

2002; Burgess & Anthony, 2001; PDB code 1h3l; SCOP fold 88945,

DALI Z score 4.4 (Z scores above 2.0 are significant), 2.9 Å r.m.s.d.

over 61 C� atoms, 0% sequence identity; Fig. 3a] and the �3 domain

of sigma factor �28 FliA from Aquifex aeolicus (Sorenson et al., 2004;

PDB code 1rp3; SCOP fold 46688, Z score 3.9, 3.3 Å r.m.s.d. over 61

C� atoms, 5% sequence identity). The N-terminal domain is also

similar to the �70-residue SAM (sterile alpha motif) domain (SCOP

fold 47768), which contains a helix–hairpin–helix (HhH) motif (Shao

& Grishin, 2000) that is found in several hundred proteins that are

involved in signal transduction and transcriptional regulation

(Grimshaw et al., 2004). For example, the SAM domain is found

within the C-terminal domain of the transcription elongation factor

NusA (Bonin et al., 2004; PDB code 1u9l; Z score 4.2, 2.5 Å r.m.s.d.

over 57 C� atoms, 11% sequence identity; Fig. 3a), which is involved

in interaction with the C-terminal domain (CTD) of the � subunit of

RNA polymerase to inhibit RNA binding during transcription

termination. It is also seen as the N-terminal domain of STE50, a

modulator of mitogen-activated protein kinase signaling in yeast

(Grimshaw et al., 2004; PDB code 1uqv; Z score 3.6, 2.80 Å r.m.s.d.

over 61 C� atoms, 10% sequence identity; Fig. 3a). SAM domains are

involved in protein–protein interactions, either for self-association or

for binding to non-SAM-domain proteins (Peterson et al., 1997).

SAM domains are also implicated in RNA binding, as in the case of

the positively charged residues in the SAM domain of Smaug (PDB

code 1oxj; Z score 2.4, 3.10 Å r.m.s.d. over 57 C� atoms with 14%

sequence identity to the N-terminal domain of NGO1945; Green et

al., 2003; Kim & Bowie, 2003). The Smaug SAM domain has been

defined as a new family of regulators of post-transcriptional control

(Aviv et al., 2003). However, none of the functionally important

residues in any of the proteins discussed above are conserved in

NGO1945. Inspection of the putative N-terminal dimer (Fig. 2a) and

electrostatic surfaces (Fig. 4a) support the possibility of this domain

being involved in protein–protein interactions, as well as DNA/RNA

binding, via charged residues in a basic patch (separate from the

dimerization interface) that is comprised of Arg36, Arg39, Arg48,

Arg54, Lys60, Arg64, Lys66, Arg71 and Arg74. The surface-exposed

structural communications
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Figure 2
NGO1945 dimerization. Based on crystal-packing analysis, dimerization may occur via (a) N-terminal domain helices H1, H5 and H7, with a total buried surface area of
1550 Å2 (red), or (b) C-terminal domain helices H8, H9 and H11, with a total buried surface area of 1930 Å2 (gray) (for clarity, the monomer encircled by a dashed oval is
depicted in approximately the same orientation in both panels).



aromatic residues Tyr34, Phe45, Trp62 and Phe80 in the monomer,

which are mostly hidden in an N-terminal dimer, could play a role in

base-stacking interactions with DNA if the functional form of the

protein requires dissociation into monomers, but this is only spec-

ulation at this point. Phe13 and Arg18 in the disordered N-terminus

may also become ordered on binding to DNA and are conserved in

many PF09836 proteins (Pfam alignment), suggesting functional

importance.

structural communications
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Figure 3
Domain structure comparisons. (a) Superimposition of the DUF2063 domain (residues 31–116) of NGO1945 (gray) with the �2 domain of RNA polymerase sigma factor
SigR from S. coelicolor (PDB code 1h3l, cyan), the SAM domain of the transcription elongation factor NusA (1u9l, yellow) and the N-terminal domain of STE50 (1uqv, red).
(b) Superimposition of NGO1945 residues 117–174 (gray) with the WW domain of human FE65 (2idh, pink), monellin (3mon, red) and the N-terminal domain of the
ribosomal protein L11 from T. maritima (1mms, yellow). (c) Comparison of NGO1945 residues 175–231 (gray) with the Z-DNA-binding domain of the vaccinia virus E3L
protein (1oyi, green), the DNA-binding domain of MafG bZIP (1k1v, blue) and the Nanog homeodomain (2vi6, orange). (d) Superimposition of NGO1945 residues 117–231
(gray) with the transcription repressor MecI (1okr, green) and the DNA-binding domain of the response regulator PhoP (2pmu, pink).



3.3. C-terminal domain

An �20-residue loop (residues 117–137) connects the N-terminal

domain to the remainder of the protein and could facilitate move-

ment of the N-terminal and C-terminal domains with respect to each

other. Residues 138–174 (Fig. 3b) are similar in structure to the WW

domain (a three-stranded �-sheet structure, but without the char-

acteristic tryptophan residues) of human FE65 (Meiyappan et al.,

2007; PDB code 2idh; Z score 1.7, 1.98 Å r.m.s.d. over 27 C� atoms,

7% sequence identity) and to the intensely sweet protein monellin

(Ogata et al., 1987; PDB code 3mon; Z score 1.9, 2.5 Å r.m.s.d. over 32

C� atoms, 3% sequence identity). Some similarity is also found to the

N-terminal domain of the ribosomal protein L11 from Thermotoga

maritima (Wimberly et al., 1999; PDB code 1mms; Z score 1.6, 3.0 Å

r.m.s.d. over 36 C� atoms, 11% sequence identity). Thus, this region

(residues 138–174) with its negatively charged surface (Fig. 4a) may

be involved in interactions with a binding partner.

Residues 175–231 of NGO1945 are similar to DNA-binding

proteins (Fig. 3c) belonging to SCOP fold 46688, examples of which

include the Z-DNA-binding domain of the vaccinia virus E3L protein

(Kahmann et al., 2004; PDB code 1oyi; Z score 4.6, 1.76 Å r.m.s.d.

over 44 C� atoms, 9% sequence identity) and the globular DNA-

binding domain of the histone protein H5 (GH5; Ramakrishnan et al.,

1993; PDB code 1hst; Z score 2.0, 3.0 Å r.m.s.d. over 49 C� atoms, 6%

sequence identity). Of the E3L residues that are implicated in

Z-DNA binding (Lys40, Arg41, Asn44, Lys45, Tyr48 and Trp66), the

only residue that is conserved in NGO1945 is Lys209 (corresponding

to Lys40 in E3L; Fig. 4b). The GH5 residues that are involved in DNA

binding include His25, Lys40, Arg42, Lys52, His62, Lys69, Arg73,

Lys85 and Arg94, none of which are conserved in NGO1945.

Significant similarity also occurs with DNA-binding eukaryotic

transcription factors (Fig. 3c) in SCOP fold 47453 (superfamily

47454), such as the DNA-binding domain of the MafG bZIP tran-

scription factor (Kusunoki et al., 2002; PDB code 1k1v; Z score 2.4,

2.3 Å r.m.s.d. over 37 C� atoms, 16% sequence identity), the Nanog

homeodomain transcription factor (Jauch et al., 2008; PDB code 2vi6;

Z score 2.7, 2.7 Å r.m.s.d. over 43 C� atoms, 7% sequence identity)

and the �-domain of DNA translocase FtsK (Lowe et al., 2008; PDB

code 2ve8; Z score 3.1, 2.23 Å r.m.s.d. over 44 C� atoms, 9% sequence

identity). The Nanog residues that could bind DNA are Lys43, Thr47,

Gln50, Asn51 and Met54, whereas those in MafG are Lys53, Arg56,

Arg57, Lys60, Asn61, Tyr64, Ala65, Cys68 and Arg69. As in E3L, the

DNA-binding residues are on the same DNA recognition helix (the

top helix in Fig. 3c). None of these Nanog and MafG residues are

conserved in NGO1945.

When residues 117–231 are considered as a single domain, it

appears to be a circular permutation of the wHTH (winged helix–

turn–helix) motif in which the ‘wing’ precedes the helices, as in the

transcription repressor MecI (PDB code 1okr; Z score 3.4, 2.7 Å

r.m.s.d. over 57 C� atoms, 5% sequence identity; Fig. 3d). A �-strand

preceding the HTH portion in a wHTH domain is also seen in the

DNA-binding domain of the response regulator PhoP (PDB code

2pmu; Z score 3.5, 3.4 Å r.m.s.d. over 71 C� atoms, 11% sequence

identity; Fig. 3d). The PhoP residues that may interact with DNA

(Wang et al., 2007) are Lys197, Trp203, Asn212, Val213, Glu215,

Ser216, Arg223, Lys224 and Arg237 (similar to the PhoB DNA-

binding residues) and the corresponding MecI residues are Lys43,

Arg46, Thr47, Thr50, Arg51, Lys54 and Lys55 (Garcia-Castellanos et

al., 2003). However, these residues are not conserved in NGO1945.

3.4. Genome-context analysis

Analysis of the ngo1945 phylogenetic co-occurrence and genomic

neighborhood in related species (Jensen et al., 2009) predicts some

other proteins with which it may have functional associations,

including NGO1943 (unknown function), NGO1944 (Pfam PF04542,

domain 2 of �70 ECF RNA polymerase sigma factors), NGO1946

(unknown function DUF692; PF05114), NGO1947 (putative peri-

plasmic protein of unknown function; Gunesekere et al., 2006),

NGO1948 (DoxX; PF07681, similar to DoxD, the small subunit of the

terminal quinol oxidase; PF04173, potential integral membrane

protein involved in sulfur oxidation), NGO1198 (PF00884, sulfatase),

NGO2105 (putative adhesion penetration protein) and NGO1482
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Figure 4
Electrostatic surface of potential NGO1945 dimers. (a) The N-terminal dimer. The monomer on the left is drawn as an electrostatic surface (� kT/e), which highlights the
basic patch (Arg36, Arg39, Arg48, Arg54, Lys60, Arg64, Lys66, Arg71 and Arg74) that may be involved in DNA/RNA-binding interactions. This basic region is distinct from
the portion involved in the protein–protein interactions that form the dimer. These residues are conserved in many proteins belonging to DUF2063 (Pfam website
alignment), suggesting functional importance. (b) The C-terminal dimer. The monomer on the left is represented as an electrostatic surface, which highlights the surface-
exposed Lys209 in NGO1945 corresponding to Lys40 that is implicated in Z-DNA binding in vaccinia virus E3L protein. The other E3L protein residues implicated in Z-
DNA binding, Arg41, Asn44, Lys45, Tyr48 and Trp66, are not conserved in NGO1945.



(unknown function DUF452; PF04301). Functional studies with

NGO1944 based on DNA microarrays suggest that NGO1944,

NGO1945, NGO1946, NGO1947 and NGO1948 may be cotran-

scribed and involved in the regulation of msrAB, a methionine sulf-

oxide reductase (Gunesekere et al., 2006).

The genomic context of other DUF2063 homologs supports an

involvement in virulence. For example, MCA3109 and ABO1516,

which are DUF2063 homologs from Methylococcus capsulatus and

Alcanivorax borkumensis, respectively, show a predicted functional

association with lipoprotein VacJ. The vacJ gene is required for

intercellular spreading and virulence in Shigella flexneri and entero-

invasive E. coli (Suzuki et al., 1994). H. influenzae homologs, such as

NTHI1444 and HI1599, co-occur with hemoglobin–haptoglobin

binding proteins that are virulence determinants (Seale et al., 2006).

Similarly, Pseudomonas aeruginosa homologs co-occur with heme-

exporter protein D (a cytochrome c-type biogenesis protein) that has

been implicated in invasion and virulence in Legionella pneumophila

(Polesky et al., 2001), while Burkholderia and Bordetella homologs

are present with hemolysin-related and exported proteins.

In conclusion, the NGO1945 crystal structure allows the assign-

ment of a putative function for this protein and for the PF09836

family in general. Structural similarity to transcription factors and

presence of a surface-exposed basic patch in the N-terminal

DUF2063 domain indicates the possibility of DNA binding. The

nonconservation of DNA-binding residues in NGO1945 compared

with structurally similar proteins may give rise to a different mode of

DNA binding. The multi-domain architecture, potential DNA

binding and genome context of ngo1945 are consistent with a possible

role in transcription pathways and indicate that the members of this

family may be transcription factors; the genome context further

supports involvement in virulence. Alternatively, they may have some

novel functionality that remains to be determined. Since significant

sequence homologs of NGO1945 are primarily found in different

strains of the bacteria Neisseria and Haemophilus, which are human

pathogens that are involved in sexually transmitted diseases, in

meningitis and in ear, eye or sinus infections in infants and children,

further structure-based biochemical investigation of NGO1945 may

be of therapeutic value.

Additional information about NGO1945 is available from

TOPSAN (Krishna et al., 2010) http://www.topsan.org/explore?PDBid

=3dee.
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